Lebanese American University
School of Arts and Sciences
Department of Computer Science and Mathematics

CSC 320 - Computer Organization

## Problem Set 2: Computer Abstractions and Technology

## Exercise 1

Find the word or phrase from the list below that best matches the description in the following questions. Use the numbers to the left of words in the answer. Each answer should be used only once.

| 1. virtual worlds | 14. operating system |
| :--- | :--- |
| 2. desktop computers | 15. compiler |
| 3. servers | 16. bit |
| 4. low-end servers | 17. instruction |
| 5. supercomputers | 18. assembly language |
| 6. terabyte | 19. machine language |
| 7. petabyte | 20. C |
| 8. data centers | 21. assembler |
| 9. embedded computers | 22. high-level language |
| 10. multicore processors | 23. system software |
| 11. VHDL | 24. application software |
| 12. RAM | 25. Cobol |
| 13. CPU | 26. Fortran |

1.1 Computer used to run large problems and usually accessed via a network.

Solution: Servers
$1.210^{15}$ or $2^{50}$ bytes
Solution: Petabyte
1.3 A class of computers composed of hundred to thousand processors and terabytes of memory and having the highest performance and cost.
Solution: Super Computers
1.4 Today's science fiction application that probably will be available in the near future Solution: Virtual Worlds
1.5 A kind of memory called random access memory

Solution: RAM
1.6 Part of a computer called central processor unit

Solution: CPU
1.7 Thousands of processors forming a large cluster

Solution: Datacenters
1.8 Microprocessors containing several processors in the same chip

Solution: Multicore Processors
1.9 Desktop computer without a screen or keyboard usually accessed via a network Solution: Low-end servers
1.10 A computer used to running one predetermined application or collection of software Solution: Embedded Computers
1.11 Special language used to describe hardware components Solution: VHDL
1.12 Personal computer delivering good performance to single users at low cost Solution: Desktop Computers
1.13 Program that translates statements in high-level language to assembly language Solution: Compiler
1.14 Program that translates symbolic instructions to binary instructions

Solution: Program that translates symbolic instructions to binary instructions: Assembler
1.15 High-level language for business data processing Solution: COBOL
1.16 Binary language that the processor can understand

Solution: Machine language
1.17 Commands that the processors understand

Solution: Instruction
1.18 High-level language for scientific computation

Solution: FORTRAN
1.19 Symbolic representation of machine instructions

Solution: Assembly language
1.20 Interface between user's program and hardware providing a variety of services and supervision functions
Solution: Operating systems
1.21 Software/programs developed by the users

Solution: Application Software
1.22 Binary digit (value 0 or 1 )

Solution: Bit
1.23 Software layer between the application software and the hardware that includes the operating system and the compilers
Solution: System software
1.24 High-level language used to write application and system software

Solution: C
1.25 Portable language composed of words and algebraic expressions that must be translated into assembly language before run in a compute
Solution: High-level language
$1.2610^{12}$ or $2^{40}$ bytes
Solution: Terabyte

## Exercise 2

2.1 For a color display using 8 bits for each of the primary colors (red, green, blue) per pixel, what should be a resolution of $1280 \times 800$ pixels, what should be the size (in bytes) of the frame buffer to store a frame?

## Solution:

size of one pixel with three 8 -bit colors $=8 \times 3=24$ bits/pixel $=3$ bytes/pixel resolution $=1280 \times 800$ pixels $=1024000$ pixels
size of one frame $=1024000 \times 3$ bytes $=3072000$ bytes $=2.93 \mathrm{MB}$
2.2 If a computer has a main memory of 2 GB , how many frames could it store, assuming the memory contains no other information?

Solution:
no. of frames in main memory $=2 \mathrm{~GB} / 2.93 \mathrm{MB}=699$ frames
2.3 If a computer connected to a 1 gigabit Ethernet network needs to send a 256 Kbytes file, how long it would take?

Solution:
time needed to transfer file $=256 \mathrm{~KB} / 1 \mathrm{Gbps}=2.097 \mathrm{~ms}$
2.4 Assuming that a cache memory is ten times faster than a DRAM memory, that DRAM is 100,000 times faster than magnetic disk, and that flash memory is 1000 times faster than disk, find how long it takes to read a file from a DRAM, a disk, and a flash memory if it takes 2 microseconds from the cache memory?

Solution:
time to read from cache $=2$ microseconds
time to read from DRAM $=$ time to read from cache $\times 10=20$ microseconds
time to read from disk $=$ time to read from DRAM $\times 100000=2 \mathrm{~s}$ time to read from flash memory $=$ time to read from disk $/ 1000=2 \mathrm{~ms}$

## Exercise 3

Consider three different processors $\mathrm{P} 1, \mathrm{P} 2$, and P 3 executing the same instruction set with the clock rates and CPIs given in the following table.

| Processor | Clock Rate | CPI |
| :---: | :---: | :---: |
| P1 | 2 GHz | 1.5 |
| P2 | 1.5 GHz | 1.0 |
| P3 | 3 GHz | 2.5 |

3.1 Which processor has the highest performance?

Solution:
performance $=1 / \mathrm{CPU}$ time, where CPU time $=$ instruction count $\times \mathrm{CPI} /$ clock rate $=\mathrm{IC} \times \mathrm{CPI} /$
clock rate.
performance of $\mathrm{P} 1=1 /(\mathrm{IC} \times 1.5 / 2 \mathrm{GHz})=1.33 \times 10^{9} / \mathrm{IC}$
performance of $\mathrm{P} 2=1 /(\mathrm{IC} \times 1 / 1.5 \mathrm{GHz})=1.5 \times 10^{9} / \mathrm{IC}$
performance of $\mathrm{P} 3=1 /(\mathrm{IC} \times 2.5 / 3 \mathrm{GHz})=1.2 \times 10^{9} / \mathrm{IC}$
P2 has the highest performance.
3.2 If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions.

Solution:

```
CPU Time of \(\mathrm{P} 1=\mathrm{IC} \times 1.5 / 2 \mathrm{GHz}=10 \mathrm{~s}\)
    \(\Rightarrow \mathrm{IC}=13.33 \times 10^{9}\) instructions
    \(\Rightarrow>\) no of cycles \(=\mathrm{IC} \times \mathrm{CPI}=13.333 \times 10^{9} \times 1.5=20 \times 10^{9}\) cycles
```

CPU Time of $\mathrm{P} 2=\mathrm{IC} \times 1 / 1.5 \mathrm{GHz}=10 \mathrm{~s}$

$$
\begin{aligned}
& \Rightarrow \mathrm{IC}=15 \times 10^{9} \text { instructions } \\
& \Rightarrow>\text { no of cycles }=\mathrm{IC} \times \mathrm{CPI}=15 \times 10^{9} \times 1=15 \times 10^{9} \text { cycles }
\end{aligned}
$$

CPU Time of $\mathrm{P} 3=\mathrm{IC} \times 2.5 / 3 \mathrm{GHz}=10 \mathrm{~s}$

$$
\begin{aligned}
& =>\mathrm{IC}=12 \times 10^{9} \text { instructions } \\
& =>\text { no of cycles }=\mathrm{ICxCPI}=12 \times 10^{9} \times 2.5=30 \times 10^{9} \text { cycles }
\end{aligned}
$$

3.3 We are trying to reduce the time by $30 \%$ but this leads to an increase of $20 \%$ in the CPI. What clock rate should we have to get this time reduction?

Solution:
$\mathrm{CPI}_{\text {new }}=\mathrm{CPI}_{\text {old }} \times 1.2=\mathrm{CPI}(\mathrm{P} 1)=1.8, \mathrm{CPI}(\mathrm{P} 2)=1.2, \mathrm{CPI}(\mathrm{P} 3)=3$
clock rate $=\mathrm{IC} \times \mathrm{CPI} / \mathrm{CPU}$ time; where new CPU time $=10 \times 0.7=7 \mathrm{~s}$
clock $\operatorname{rate}(\mathrm{P} 1)=13.33 \times 10^{9} \times 1.8 / 7=3.42 \mathrm{GHz}$
clock rate $(\mathrm{P} 2)=15 \times 10^{9} \times 1.2 / 7=2.57 \mathrm{GHz}$
clock rate $(\mathrm{P} 3)=12 \times 10^{9} \times 3 / 7=5.14 \mathrm{GHz}$

For problems below, use the information in the following table.

| Processor | Clock Rate | No. Instructions | Time |
| :---: | :---: | :---: | :---: |
| P1 | 2 GHz | $20 \times 10^{9}$ | 7 s |
| P2 | 1.5 GHz | $30 \times 10^{9}$ | 10 s |
| P3 | 3 GHz | $90 \times 10^{9}$ | 9 s |

3.4 Find the IPC (instructions per cycle) for each processor.

Solution:
$\mathrm{IPC}(\mathrm{P} 1)=1 / \mathrm{CPI}=\mathrm{IC} /(\mathrm{CPU}$ time $\times$ clock rate $)=20 \times 10^{9} /(7 \times 2 \mathrm{GHz})=1.428$
$\operatorname{IPC}(\mathrm{P} 2)=30 \times 10^{9} /(10 \times 1.5 \mathrm{GHz})=2$
$\operatorname{IPC}(\mathrm{P} 3)=90 \times 10^{9} /(9 \times 3 \mathrm{GHz})=3.33$
3.5 Find the clock rate for P 2 that reduces its execution time to that of P 1 .

Solution:
CPU time $_{\text {new }} /$ CPU time ${ }_{\text {old }}=7 / 10=0.7$
clock $\operatorname{rate}_{\text {new }}=$ clock rate ${ }_{\text {old }} / 0.7=1.5 \mathrm{GHz} / 0.7=2.14 \mathrm{GHz}$.
3.6 Find the number of instructions for P 2 that reduces its execution time to that of P3.

Solution:
CPU time ${ }_{\text {new }} /$ CPU time ${ }_{\text {old }}=9 / 10=0.9$
$\mathrm{IC}_{\text {new }}=\mathrm{IC}_{\text {old }} \times 0.9=30 \times 10^{9} \times 0.9=27 \times 10^{9}$.

## Exercise 4

Consider two different implementations of the same instruction set architecture. There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each implementation are given in the following table.

|  | Clock Rate | CPI Class A | CPI Class B | CPI Class C | CPI Class D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P1 | 1.5 GHz | 1 | 2 | 3 | 4 |
| P2 | 2 GHz | 2 | 2 | 2 | 2 |

4.1 Given a program with $10^{6}$ instructions divided into classes as follows: $10 \%$ class A, $20 \%$ class $\mathrm{B}, 50 \%$ class C, and $20 \%$ class D, which implementation is faster?

## Solution:

Class A: $10^{5}$ instr.
Class B: $2 \times 10^{5}$ instr.
Class C: $5 \times 10^{5}$ instr.
Class D: $2 \times 10^{5}$ instr.
CPU time $=\mathrm{IC} \times \mathrm{CPI} /$ clock rate
Total time $\mathrm{P} 1=\left(10^{5}+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 4\right) /\left(1.5 \times 10^{9}\right)=1.866 \mathrm{~ms}$
Total time $\mathrm{P} 2=\left(10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2\right) /\left(2 \times 10^{9}\right)=1 \mathrm{~ms}$
4.2 What is the global CPI for each implementation?

Solution:
$\mathrm{CPI}=\mathrm{CPU}$ time $\times$ clock rate $/ \mathrm{IC}$
$\mathrm{CPI}(\mathrm{P} 1)=1.866 \times 10^{-3} \times 1.5 \times 10^{9} / 10^{6}=2.8$
$\operatorname{CPI}(P 2)=1 \times 10^{-3} \times 2 \times 10^{9} / 10^{6}=2.0$
4.3 Find the clock cycles required in both cases.

Solution:
clock cycles $(\mathrm{P} 1)=10^{5} \times 1+2 \times 10^{5} \times 2+5 \times 10^{5} \times 3+2 \times 10^{5} \times 4=28 \times 10^{5}$
clock cycles $(\mathrm{P} 2)=10^{5} \times 2+2 \times 10^{5} \times 2+5 \times 10^{5} \times 2+2 \times 10^{5} \times 2=20 \times 10^{5}$
The following table shows the number of instructions for a program.

| Arith | Store | Load | Branch | Total |
| :---: | :---: | :---: | :---: | :---: |
| 500 | 50 | 100 | 50 | 700 |

4.4 Assuming that arith instructions take 1 cycle, load and store 5 cycles, and branch 2 cycles, what is the execution time of the program in a 2 GHz processor?

Solution:
$(500 \times 1+50 \times 5+100 \times 5+50 \times 2) /\left(2 \times 10^{9}\right)=675 \mathrm{~ns}$
4.5 Find the CPI for the program.

Solution:
$\mathrm{CPI}=\mathrm{CPU}$ time $\times$ clock rate $/ \mathrm{IC}$
$\mathrm{CPI}=675 \times 10^{-9} \times 2 \times 10^{9} / 700=1.928$
4.6 If the number of load instructions can be reduced by one-half, what is the speedup and the CPI?

Solution:
CPU time $=(500 \times 1+50 \times 5+50 \times 5+50 \times 2) /\left(2 \times 10^{9}\right)=550 \mathrm{~ns}$
Speedup $=675 \mathrm{~ns} / 550 \mathrm{~ns}=1.28$
CPU time $=\mathrm{IC} \times \mathrm{CPI} /$ clock rate $\Rightarrow \mathrm{CPI}=550 \times 10^{-9} \times 2 \times 10^{9} / 650=1.69$

## Exercise 5

The table below shows the instruction type breakdown of a given application executed on $1,2,4$, or 8 processors. Using this data, you will be exploring the speed-up of applications on parallel processors.

|  | Processors | No. Instructions per Processor |  | CPI |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Arithmetic | Load/Store | Branch | Arithmetic | Load/Store | Branch |
| a. | 1 | 2560 | 1280 | 256 | 1 | 4 | 2 |
|  | 2 | 1280 | 640 | 128 | 1 | 4 | 2 |
|  | 640 | 320 | 64 | 1 | 4 | 2 |  |
|  | 8 | 320 | 160 | 32 | 1 | 4 | 2 |

5.1 The table above shows the number of instructions required per processor to complete a program on a multiprocessor with $1,2,4$, or 8 processors. What is the total number of instructions executed per processor? What is the aggregate number of instructions executed across all processors?

## Solution:

| Processors | Instruction per Processor | Total instructions |
| :--- | :--- | :--- |
| 1 | 4096 | 4096 |
| 2 | 2048 | 4096 |
| 4 | 1024 | 4096 |
| 8 | 512 | 4096 |

5.2 Given the CPI values on the right of the table above, find the total execution time for this program on 1, 2, 4, and 8 processors. Assume that each processor has a 2 GHz clock frequency.

## Solution:

| Processors | Execution time (ns) |
| :--- | :--- |
| 1 | 4096 |
| 2 | 2048 |
| 4 | 1024 |
| 8 | 512 |

5.3 If the CPI of the arithmetic instructions was doubled, what would the impact be on the execution time of the program on $1,2,4$, or 8 processors?

Solution:

| Processors | Execution time (ns) |
| :--- | :--- |
| 1 | 5376 |
| 2 | 2688 |
| 4 | 1344 |
| 8 | 672 |

